

Facile Activation of H–H and Si–H Bonds by Boranes

Georgii I. Nikonov,*^{,†} Sergei F. Vyboishchikov,^{*,‡} and Oleg G. Shirobokov[†]

[†]Chemistry Department, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario L2S 3A1, Canada

[‡]Institut de Química Computacional and Departament de Química, Campus de Montilivi, Universitat de Girona, 17071 Girona, Spain

Supporting Information

ABSTRACT: The borane $B(C_6F_5)_3$ is a precatalyst for H/D exchange between H₂ and deuterium-labeled silanes (D₃SiPh, D₂SiMePh, DSiMe₂Ph, DSiEt₃). Experimental and DFT studies reveal that $B(C_6F_5)_3$ itself cannot activate dihydrogen but converts to $HB(C_6F_5)_2$ under the action of hydrosilane. The latter species easily activates H–H and Si–H bonds by a σ -bond metathesis mechanism, which was further confirmed by the reactions of BD₃·THF with H₂.

ctivation of hydrogen gas by non-transition-metal systems A ctivation of nyurogen gas by non-dimensional first of active research, both in the context of hydrogen storage¹ and for the development of metal-free hydrogenation/reduction catalysis.² There have been several recent breakthroughs in transition-metal-free H₂ activation: the irreversible hydrogenations of digermyne³ and carbene,⁴ and the discovery of H₂ activation by frustrated Lewis pairs.^{5,6} In the latter case, the H₂ molecule is believed to be heterolytically split inside an R_3P ...BAr₃ cage to give the phosphonium ion R_3PH^+ and borate HBAr₃^{-7,8} This process can be done both reversibly⁹ and catalytically.^{2a,b,d} Activation of dihydrogen on a single boron center has been observed only very recently in the special case of irreversible hydrogenation of borole.¹⁰ At room temperature no reaction takes place between H₂ and tertiary boranes, such as the highly electrophilic $B(C_6F_5)_3$, according to experimental¹¹ and computational studies.^{7,12} In contrast, calculations of the reaction between H₂ and BH₃ were shown¹³ to give a weakly bound $BH_3 \cdot H_2$ adduct, and such a species was indeed generated by reacting boron atoms with hydrogen in an argon matrix.^{14,15}

Here we report an H/D exchange between the dihydrogen and silane catalyzed by boranes and provide evidence for the activation of H–H and Si–H bonds on a single boron center. We also provide evidence that the reaction proceeds via a σ -bond metathesis mechanism rather than by heterolytic bond cleavage.

Our initial observation was that $B(C_6F_5)_3$ catalyzes exchange between gaseous H_2 and deuterium-labeled silanes according to the equation

$$R_3Si-D + H_2 \rightarrow R_3Si-H + HD$$
(1)

(where $R_3Si = D_2PhSi$, DMePhSi, Me_2PhSi , and Et_3Si), characterized by the appearance of the HD triplet at 4.54 ppm with a J(H-D) spin-spin coupling constant of 43.2 Hz in the ¹H NMR spectrum in C_6D_6 ,¹⁶ significant broadening of the Si-H signal, and appearance of the H_xD_ySi signal(s) in the case of primary and secondary silanes. There is a clear qualitative trend that bulkier silanes undergo the exchange slower, as judged by the time required for the appearance of the HD and the extent of broadening of the SiH signal. After 1 day the extent of proton scrambling into $PhSiD_3$, $PhMeSiD_2$, and $PhMe_2SiD$ is 80%, 60%, and 30%, respectively. The electrophilicity of borane as a prerequisite for the exchange is evidenced in the BPh₃-catalyzed reaction, which provides observable H/D exchange only after 1 month.

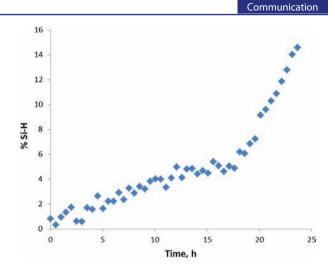
We were intrigued by the mechanism of this reaction, as previous reports by other workers⁷ as well as our own experimental and DFT studies demonstrate that $B(C_6F_5)_3$ does not form a stable adduct with dihydrogen. Our initial mechanistic suggestion for the reaction shown in eq 1 was that hydrogen activation may proceed on a SiR₃⁺ cation¹⁷ formed *in situ* by hydride abstraction from HSiR₃ by $B(C_6F_5)_3$ (i.e., an ionic mechanism). However, our DFT calculations showed that such a process is energetically implausible in nonpolar media such as benzene (Table 1, entry 1). Under these conditions, silvlium ion is not formed, even as a π -complex with benzene, SiEt₃⁺·C₆H₆¹⁸ (Table 1, entry 2). Stabilization due to a Si–H–Si bridge formation to give the $[(Et_3Si)_2(\mu-H)]^+$ ion¹⁹ is not sufficient either (Table 1, entry 3). Alkyl abstraction by borane from triethylsilane is even less favorable than hydride abstraction (Table 1, entry 4).

During our further quest by *ab initio* calculations for a hydrogen-active intermediate, we found a stable adduct of the electrophilic borane $B(C_6F_5)_3$ with silane, $Et_3Si-H\cdots B(C_6F_5)_3$, which displays a short $B\cdots H$ distance of 1.398 Å and a noticeable elongation of the Si-H bond (1.554 Å in $Et_3SiH \cdot B(C_6F_5)_3$, vs 1.489 Å in Et_3SiH). Nonetheless, the $Et_3Si^{\delta+}-H^{\delta-}$ polarization caused by the adduct formation is not sufficient, and the adduct remains completely inert with respect to dihydrogen. Keeping in mind the known examples of dihydrogen activation by means of frustrated Lewis pairs,⁶ we also examined the possibility of an H-H activation by way of an $R_3Si^{\delta+}-H^{\delta-}\cdots H^{\delta+}-M^{\delta-}\cdots BAr_3$ complex, in which the R_3SiH and BAr_3 moieties would be kept together by a kind of a long-range intermolecular interaction.⁷ However, extensive calculations did not reveal any such intermediate.

The fact that both R_3SiH and BAr_3 , as well as their adduct, turned out to be inactive with respect to molecular hydrogen implies that there must be another species that actually reacts with H_2 . A number of experimental observations suggested the existence of an active intermediate. We noticed that broadening of the Si–H NMR signals upon addition of borane involves an induction period depending on the silane. Similarly, an

Received: January 12, 2012 Published: March 6, 2012

Table 1. Relative Energies $\Delta E_{\rm e}$ at MP2/6-311G^{**} and CCSD/6-311++G^{**}//MP2/6-311G^{**} Levels and ΔG°_{298} CCSD COSMO (in kcal·mol⁻¹)


		$\Delta E_{ m e}$		
	process	MP2	CCSD	ΔG°_{298} CCSD COSMO ^a
1.	$Et_{3}SiH + B(C_{6}F_{5})_{3} \rightarrow [Et_{3}Si]^{+} + [HB(C_{6}F_{5})_{3}]^{-}$	106.9	99.8	59.6
2.	$\begin{array}{l} \text{Et}_{3}\text{SiH} + \text{C}_{6}\text{H}_{6} + \text{B}(\text{C}_{6}\text{F}_{5})_{3} \rightarrow \\ [\text{Et}_{3}\text{Si}]^{+} \cdot \text{C}_{6}\text{H}_{6} + [\text{HB}(\text{C}_{6}\text{F}_{5})_{3}]^{-} \end{array}$	73.0	70.8	50.1
3.	$2Et_{3}SiH + B(C_{6}F_{5})_{3} \rightarrow (Et_{3}Si)_{2}H^{+} + [HB(C_{6}F_{5})_{3}]^{-}$	70.5	63.8	44.2
4.	$\begin{array}{l} Et_{3}SiH + B(C_{6}F_{5})_{3} \rightarrow [Et_{2}HSi]^{+} + \\ [EtB(C_{6}F_{5})_{3}]^{-} \end{array}$	125.6	117.1	74.0
5.	$\begin{array}{l} \text{Et}_{3}\text{SiH} + \text{B}(\text{C}_{6}\text{F}_{5})_{3} \rightarrow \\ \text{Et}_{3}\text{SiH} \cdot \text{B}(\text{C}_{6}\text{F}_{5})_{3} \end{array}$	-17.7	-18.8	-4.4
6	$Et_3SiH \cdot B(C_6F_5)_3 \rightarrow Et_3Si(C_6F_5) + HB(C_6F_5)_2$; barrier	18.3	24.5	27.8
7.	$\begin{array}{l} \text{Et}_{3}\text{SiH} + B(C_{6}F_{5})_{3} \rightarrow \text{Et}_{3}\text{Si}(C_{6}F_{5}) \\ + HB(C_{6}F_{5})_{2} \end{array}$	4.6	4.7	6.1
8.	$H_2 + HB(C_6F_5)_2 \rightarrow H_2 + HB(C_6F_5)_2$ (degenerate exchange); barrier	12.2	15.1	23.5
9.	$\begin{array}{l} \text{Et}_{3}\text{SiH} + \text{HB}(C_{6}\text{F}_{5})_{2} \rightarrow \\ \text{Et}_{3}\text{SiH} \cdot \text{HB}(C_{6}\text{F}_{5})_{2}\text{; adduct} \end{array}$	-17.2	-15.6	-1.4
10.	$Et_3SiH·HB(C_6F_5)_2 \rightarrow$ $Et_3SiH·HB(C_6F_5)_2$; adduct (degenerate exchange); barrier	1.8	3.4	5.1
11.	$\begin{array}{l} \text{Et}_{3}\text{SiH} + \text{HB}(\text{C}_{6}\text{F}_{5})_{2} \rightarrow \text{Et}_{3}\text{Si-}\\ \text{B}(\text{C}_{6}\text{F}_{5})_{2} + \text{H}_{2}\text{;} \end{array}$	4.6	5.9	8.6
	barrier	7.4	9.1	21.7
12.	$\begin{array}{l} PhH + HB(C_6F_5)_2 \rightarrow Ph\text{-}B(C_6F_5)_2 \\ + H_2; \end{array}$	-6.6	-3.6	-3.7
	barrier	14.6	21.5	31.3
13.	$H_2 + BH_3 \rightarrow H_2 \cdot BH_3$; adduct	-3.8	-2.3	10.4
14.	$H_2 + BH_3 \rightarrow H_2 + BH_3$ (degenerate exchange); barrier	2.6	5.1	18.1
15.	BH_3 ·THF $\rightarrow BH_3 + THF$	25.4	21.9	5.9
^{<i>a</i>} An	estimate at the CCSD/6-311++G**//MP2/6-311G** level			

^{*a*}An estimate at the CCSD/6-311++G**//MP2/6-311G** level taking into account solvent effects (benzene).

induction period was observed for the H₂/silane exchange (Figure 1). Also, it was shown previously²⁰ that thermolysis of Et₃SiH with $B(C_6F_5)_3$ at 60 °C for 3 days gives a secondary borane according to the equation

$$Et_3SiH + B(C_6F_5)_3 \rightarrow HB(C_6F_5)_2 + Et_3Si(C_6F_5)$$

We found that this H/C exchange process occurs via formation of the $Et_3Si-H\cdots B(C_6F_5)_3$ adduct followed by a σ -bond metathesis (Figure 2a) with the calculated activation free energy $\Delta^{\ddagger}G^{\circ}_{298} = 27.8 \text{ kcal} \cdot \text{mol}^{-1}$. In the σ -bond metathesis, the cleavage of old σ bonds (e.g., C-B and Si-H) occurs simultaneously with the formation of new σ bonds (e.g., Si-C and B-H) in a concerted four-center transition state.²¹ Experimentally, we found that such an H/C exchange is much more facile for primary (PhSiH₃) and secondary silanes $(PhMeSiH_2)$ and is observed already within a few hours at room temperature (9% yield of $HB(C_6F_5)_2$ overnight in the case of PhMeSiH₂, and 5% yield of HB(C_6F_5)₂ overnight in the case of PhMe2SiH, according to ¹⁹F NMR).²² These observations are in line with the ease of the boron-catalyzed $H_2/DSiR_3$ exchange (vide supra). It is, therefore, reasonable to assume that $HB(C_6F_5)_2$ formed *in situ* is the true catalyst of the hydrogen/silane and silane/silane exchanges. Indeed, when

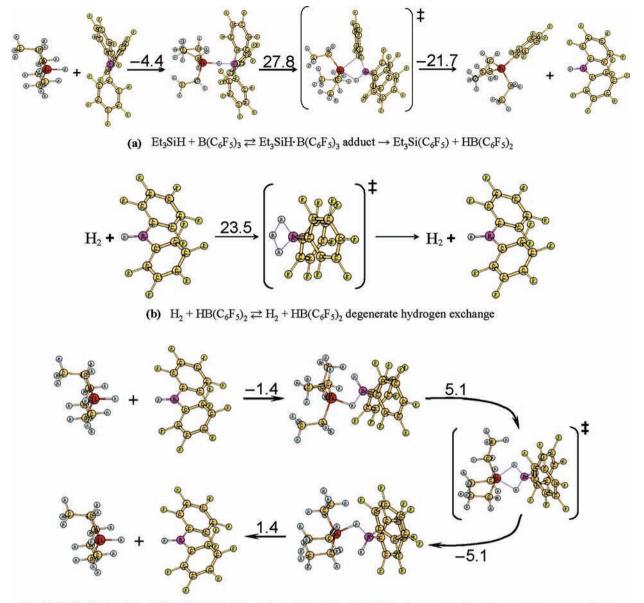
Figure 1. Formation of protiosilane in the solution of $PhSiD_3$ in C_6D_6 under hydrogen atmosphere in the presence of $B(C_6F_5)_3$. 100% conversion corresponds to the exchange of all three deuteriums of $PhSiD_3$ for protons.

 $HB(C_6F_5)_2$ was used as a catalyst for the $H_2/PhSiD_3$ exchange, 70% exchange was reached without an induction period in <13.5 h (cf. 14.5% after 24 h in Figure 1).

According to calculations, HB(C_6F_5)₂ does not form a stable adduct with H₂ either, but undergoes a direct degenerate 2+2 σ -bond metathesis via a nearly symmetric transition state (η^2 -H₃)B(C_6F_5)₂ (Table 1, Figure 2b) with a moderate $\Delta^{\pm}G^{\circ}_{298}$ barrier of 23.5 kcal·mol⁻¹. The feasibility of such metathesis was further proved experimentally by the direct reaction of BD₃. THF in THF/ C_6D_6 with hydrogen at atmospheric pressure, which results in very fast (<5 min) appearance of H–D in the ¹H and ²H NMR spectra. The concomitant formation of BH_xD_y. THF was confirmed by ¹H–¹¹B HSQC NMR experiment.

Quantum mechanical calculations established that dissociation of the BH₃·THF adduct proceeds easily ($\Delta G^{\circ}_{298} = 5.9 \text{ kcal}\cdot\text{mol}^{-1}$). The subsequent degenerate H₂/BH₃ exchange occurs with a reasonable barrier of 18.1 kcal·mol⁻¹. For the latter process we did find a loosely bound adduct H₂·BH₃ (Table 1), in accord with the previous calculations.¹³

A similar 2+2 degenerate hydride metathesis (Figure 2c),


$$HB(C_6F_5)_2 + Et_3SiH \rightarrow HB(C_6F_5)_2 + Et_3SiH$$

requires a low $\Delta^{\ddagger}G^{\circ}_{298}$ barrier of 5.1 kcal·mol⁻¹ (Table 1), which eventually accounts for the experimentally observed isotope exchange between H₂ and the deuterium atom in Et₃SiD.

Apart from the hydrogen *exchange*, we have also looked at the possibility of productive dehydrogenative B-Si *coupling*,

$$Et_3SiH + HB(C_6F_5)_2 \rightarrow Et_3Si-B(C_6F_5)_2 + H_2$$

(Figure 2d), that would afford synthetically useful silylboranes.²³ According to calculations, the reaction is energetically uphill ($\Delta G^{\circ}_{298} = +8.6 \text{ kcal} \cdot \text{mol}^{-1}$) but still has an affordable barrier ($\Delta^{+}G^{\circ}_{298} = 21.7 \text{ kcal} \cdot \text{mol}^{-1}$, Table 1). Such a coupling may therefore become feasible if the evolved dihydrogen is consumed in a thermodynamically favorable process (e.g., in a reaction with an unsaturated substrate) or is removed from the reaction media. It is noteworthy that the synthetically important dehydrogenative B–C coupling²⁴ between benzene and borane (in this example HB(C₆F₅)₂) is thermodynamically feasible ($\Delta G^{\circ}_{298} = -3.7 \text{ kcal} \cdot \text{mol}^{-1}$) but proceeds with a large barrier ($\Delta^{+}G^{\circ}_{298} = 31.3 \text{ kcal} \cdot \text{mol}^{-1}$, Table 1). This kinetic hurdle is in agreement with the fact that transition-metal

(c) $Et_3SiH + HB(C_6F_5)_2 \rightleftharpoons Et_3SiH + HB(C_6F_5)_2$ adduct $\rightleftharpoons Et_3SiH + HB(C_6F_5)_2$ degenerate silane-borane hydrogen exchange

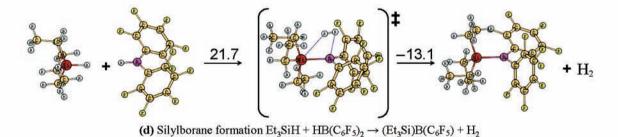


Figure 2. σ -Bond metathesis reaction on boron centers. The numbers above the arrows are standard Gibbs energy changes (ΔG°_{298}) or barriers ($\Delta^{+}G^{\circ}_{298}$) in kcal·mol⁻¹ calculated at the CCSD level taking into account solvation effects.

catalysts are needed for dehydrogenative coupling of arenes Ar–H and boranes $HB(OR)_2$ to give arylboranes $Ar-B(OR)_2$.^{24,25}

In summary, we have demonstrated activation of H–H and Si–H bonds on a single borane center and unveiled a mechanism based on a series of previously unrecognized direct σ -bond metatheses resulting in substituent exchange on the boron center.

ASSOCIATED CONTENT

Supporting Information

General experimental procedures and computational details. This material is available free of charge via the Internet at http://pubs.acs.org.

Journal of the American Chemical Society

AUTHOR INFORMATION

Corresponding Author

gnikonov@brocku.ca; vyboishchikov@googlemail.com

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by NSERC (DG to G.I.N.) and the Spanish Ministerio de Ciencia e Innovación (grant CTQ2008-03077/BQU). We are very grateful to Razvan Semionescu (Brock University) for help with NMR. We also thank the CFI/ OIT for a generous equipment grant.

REFERENCES

 (1) (a) Eberle, U.; Felderhoff, M.; Schüth, F. Angew. Chem., Int. Ed.
 2009, 48, 6608. (b) Campbell, P. G.; Zakharov, L. N.; Grant, D. J.; Dixon, D. A.; Liu, S.-Y. J. Am. Chem. Soc. 2010, 132, 3289. (c) Geier,
 S. J.; Gilbert, T. M.; Stephan, D. W. J. Am. Chem. Soc. 2008, 130, 12632.
 (2) (a) Chase, P. A.; Welch, G. C.; Jurca, T.; Stephan, D. W. Angew.

Chem, Int. Ed. 2007, 46, 8050. (b) Chen, D.; Klankermayer, J. Chem. Commun. 2008, 2130. (c) Li, B.; Xu, Z. J. Am. Chem. Soc. 2009, 131, 16380. (d) Heiden, Z.; Stephan, D. W. Chem. Commun. 2011, 47, 5729. (e) Erős, G.; Mehdi, H.; Pápai, I.; Rokob, T. A.; Királi, P.; Tárkányi, G.; Soós, T. Angew. Chem., Int. Ed. 2010, 49, 6559.

(3) Spikes, G. H.; Fettinger, J. C.; Power, P. P. J. Am. Chem. Soc. 2005, 127, 12232.

(4) Frey, G. D.; Lavallo, V.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G. Science 2007, 316, 439.

(5) Stephan, D. W. Org. Biol. Chem. 2008, 6, 1535.

(6) (a) Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2010, 49, 46.
(b) Kenward, A. L.; Piers, W. E. Angew. Chem., Int. Ed. 2008, 47, 38.
(7) (a) Rokob, T. A.; Hamza, A.; Stirling, A.; Pápai, I. J. Am. Chem. Soc. 2009, 131, 2029. (b) Rokob, T. A.; Hamza, A.; Stirling, A.; Stors, T.; Pápai, I. Angew. Chem., Int. Ed. 2008, 47, 2435. (c) Grimme, S.; Kruse, H.; Goerigk, L.; Erker, G. Angew. Chem., Int. Ed. 2010, 49, 1402.

(8) The Piers group found evidence that activation of H_2 by the $PBu_3^t/B(C_6F_5)_3$ pair can be catalyzed by $Bu_3^tP(C_6F_4)B(C_6F_5)_2$ formed *in situ*: Marwitz, A. J. V.; Dutton, J. L.; Mercier, L. G.; Piers, W. E. *zJ. Am. Chem. Soc.* **2011**, *133*, 10026.

(9) Welch, G. C.; San Juan, R. R.; Masuda, J. D.; Stephan, D. W. Science **2006**, 314, 1124.

(10) Fan, C.; Mercier, L. G.; Piers, W. E.; Tuononen, H. M.; Parvez, M. J. Am. Chem. Soc. **2010**, 132, 9604.

(11) Welch, G. C.; Stephan, D. W. J. Am. Chem. Soc. 2007, 129, 1880.
(12) Tertiary boranes react with dihydrogen upon thermolysis (160–200 °C) in high-pressure autoclaves (200–300 atm) to give secondary and primary boranes: (a) Köster, R. Angew. Chem. 1956, 68, 383.
(b) Köster, R.; Brüno, G.; Binger, P. Ann. Chem. 1962, 644, 1.

(13) For an example of high-level calculations, see: Schuurman, M. S.; Allen, W. D.; Schleyer, P. v. R.; Schaefer, H. F. J. Chem. Phys. **2005**, 122, 104302.

(14) Tague, T. J.; Andrews, L. J. Am. Chem. Soc. 1994, 116, 4970.

(15) BH_5 intermediate was also postulated to be formed upon hydrolysis of BH_4^{-} : (a) Mesmer, R. E.; Jolly, W. L. Inorg. Chem. 1962, 1, 608. (b) Kreevoy, M. M.; J. Hutchins, E. C. J. Am. Chem. Soc. 1972, 94, 6371. (c) Olah, G. A.; Westerman, P. W.; Mo, Y. K.; Klopman, G. J. Am. Chem. Soc. 1972, 94, 7859. (d) Davis, R. E.; Bromels, E. B.; Kibby, C. L. J. Am. Chem. Soc. 1962, 84, 885.

(16) Nageswara Rao, B. D.; Anders, L. R. *Phys. Rev.* 1965, 140, A112.
(17) Analogous formation of SiEt₃⁺ was previously suggested to account for the borane-catalyzed silane/silane exchange and borane-catalyzed hydrosilylation: (a) Parks, D. J.; Blackwell, J. M.; Piers, W. E. *J. Org. Chem.* 2000, 65, 3090. (b) Berkefeld, A.; Piers, W. E.; Parvez, M. *J. Am. Chem. Soc.* 2010, 132, 10660. (c) Blackwell, J. M.; Morrison, D. J.; Piers, W. E. *Tetrahedron* 2002, 58, 8247. (d) For the reaction of hydrogen with silylium ions, see: Schäfer, A.; Reißmann, M.; Schäfer, A.; Saak, W.; Haase, D.; Müller, T. *Angew. Chem., Int. Ed.* 2011, 50, 12636.

(18) Lambert, J. B.; Zhang, S.; Stren, C. L.; Huffman, J. C. Science 1997, 275, 39.

(19) Hoffmann, S. P.; Kato, T.; Tham, F. S.; Reed, C. A. Chem. Commun. 2005, 767.

(20) Parks, D. J.; Piers, W. E.; Yap, G. P. A Organometallics 1998, 17, 5492.

(21) σ -Bond metathesis is a well-established mechanism in transition metal chemistry, e.g.: Hartwig, J. Organotransition Metal Chemistry. From Bonding to Catalysis; University Science Books: Mill Valley, CA, 2010.

(22) $R_3Si(C_6F_5)$ was observed by ¹⁹F NMR as another coproduct.

(23) The silylboranes are interesting reagents for making functionalized materials via Si–B bond additions. See, for example: Oshima, K.; Ohmura, T.; Suginome, M. J. Am. Chem. Soc. 2011, 133, 7324.

(24) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. *Chem. Rev.* **2010**, *110*, 890.

(25) (a) Inverson, C. N.; Smith, M. R. J. Am. Chem. Soc. **1999**, *121*, 7696. (b) Cho, J.-Y.; Kin Tse, M.; Holmes, D.; Maleczka, R. E. Jr.; Smith, M. R. III Science **2002**, 295, 305. (c) Chen, H.; Schlecht, S.; Semple, T. C.; Hartwig, J. F. Science **2000**, 287, 1995.

NOTE ADDED IN PROOF

A similar H/D exchange has been very recently observed by Wang et al. for the system $H_2/DB(2,4,6-(F_3C)_2C_6H_2)_2$ (Lu, Z.; Cheng, Z.; Chen, Z.; Weng, L.; Li, Z.H.; Wang, H. Angew. Chem. Int. Ed. **2011**, 50, 12227).